CETIFICATION

SDG No:

MC47834

Humacao, PR

Laboratory:

Accutest, Massachusetts

Site:

BMS, Building 5 Area, PR

Matrix:

Groundwater

SUMMARY: Groun

Groundwater samples (Table 1) were collected on the BMSMC facility – Building 5 Area. The BMSMC facility is located in Humacao, PR. Samples were taken September 13-15, 2016 and were analyzed in Accutest Laboratory of Marlborough, Massachusetts that reported the data under SDG No.: MC47834. Results were validated using the following quality control criteria of the methods employed (MADEP VPH and MAPED EPH, Massachusets Department of Environmental Protection, 2004) and the latest validation guidelines (July, 2015) of the EPA Hazardous Waste Support Section. The analyses performed are shown in Table 1. Individual data review worksheets are enclosed for each target analyte group. The data sample organic data samples summary form shows for analytes results that were qualified.

In summary the results are valid and can be used for decision taking purposes.

Table 1. Samples analyzed and analysis performed

SAMPLE ID	SAMPLE DESCRIPTION	MATRIX	ANALYSIS PERFORMED
MC47834-1	BR-2	Groundwater	Volatiles TPHC Ranges
			Extractable TPHC Ranges
MC47834-1D	BR-2 MSD	Groundwater	Volatiles TPHC Ranges
			Extractable TPHC Ranges
MC47834-1S	BR-2 MS	Groundwater	Volatiles TPHC Ranges
	<u> </u>		Extractable TPHC Ranges
MC47834-2	BR-3	Groundwater	Volatiles TPHC Ranges
			Extractable TPHC Ranges
MC47834-3	BR-4	Groundwater	Volatiles TPHC Ranges
			Extractable TPHC Ranges
MC47834-4	MW-15	Groundwater	Volatiles TPHC Ranges
			Extractable TPHC Ranges
MC47834-5	MW-14	Groundwater	Volatiles TPHC Ranges
			Extractable TPHC Ranges
MC47834-6	S-39D	Groundwater	Volatiles TPHC Ranges
			Extractable TPHC Ranges
MC47834-7	RA-10D	Groundwater	Volatiles TPHC Ranges
			Extractable TPHC Ranges

dael Infor

Reviewer Name:

Rafael Infante

Chemist License 1888

Signature:

Date:

October 6, 2016

Report of Analysis

By

AF

Page I of I

Client Sample ID: BR-2

Lab Sample ID: MC47834-1

File ID

Matrix:

AQ - Ground Water

DF

Method:

MADEP VPH REV 1.1

Date Sampled: 09/13/16 Date Received: 09/16/16

Percent Solids: n/a

n/a

Prep Date

Project:

BMSMC, Building 5 Area, Puerto Rico

Analyzed

09/19/16

Prep Batch n/a

Analytical Batch GWX3842

Run #1 Run #2

Purge Volume

WX77661.D

Run #1 Run #2

 $5.0 \, \mathrm{ml}$

Volatile TPHC Ranges

CAS No.	Compound	Result	RL	MDL	Units	Q
	C5- C8 Aliphatics (Unadj.)	19.9	50	8.8	ug/l	J
	C9- C12 Aliphatics (Unadj.)	102	50	8.0	ug/l	B
	C9- C10 Aromatics (Unadj.)	74.0	50	9.7	ug/l	B
	C5- C8 Aliphatics	16.0	50	8.8	ug/l	J
	C9- C12 Aliphatics	26.9	50	8.0	ug/l	J

CAS No.	Surrogate Recoveries	Run#1	Run# 2	Limits
	2,3,4-Trifluorotoluene	83% 84%		70-130%

Page 1 of 1

Client Sample ID: BR-2

Lab Sample ID: MC47834-1

Matrix: Method:

Project:

AQ - Ground Water

MADEP EPH REV 1.1 SW846 3510C

BMSMC, Building 5 Area, Puerto Rico

Date Sampled: 09/13/16
Date Received: 09/16/16

Percent Solids: n/a

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 DE15700.D 1 10/01/16 TA 09/26/16 OP48782 GDE875

Run #2

Initial Volume Final Volume

Run #1 920 ml

 $2.0 \, \mathrm{m}$

Run #2

Extractable TPHC Ranges

CAS No.	Compound	Result	RL	MDL	Units	Q
	C11-C22 Aromatics (Unadj.) C9-C18 Aliphatics C19-C36 Aliphatics C11-C22 Aromatics	74.2 ND 29.4 73.6	110 110 110 110	31 18 29 31	ug/l ug/l ug/l ug/l	J JB J

CAS No.	Surrogate Recoveries	Run#1	Run# 2	Limits
84-15-1 321-60-8 3386-33-2 580-13-2	o-Terphenyl 2-Fluorobiphenyl 1-Chlorooctadecane 2-Bromonaphthalene	78% 88% 82% 102%		40-140% 40-140% 40-140% 40-140%

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

By

AF

Page 1 of 1

Client Sample ID: BR-3

Lab Sample ID: MC47834-2

File ID

Matrix:

AQ - Ground Water

Method:

DF

MADEP VPH REV 1.1

Date Sampled: 09/14/16 Date Received: 09/16/16

n/a

Percent Solids: n/a

Project:

BMSMC, Building 5 Area, Puerto Rico

Analyzed

09/19/16

Prep Batch

Prep Date

Analytical Batch GWX3842

Run #1 Run #2

Purge Volume

WX77666.D

Run #1 Run #2

 $5.0 \, \mathrm{ml}$

Volatile TPHC Ranges

CAS No	Compound	Result	RL	MDL	Units	Q
	00 00 111 1					

C5-C8 Aliphatics (Unadj.) 9.8 8.8 J ug/l C9- C12 Aliphatics (Unadj.) 13.4 50 8.0 ug/I JB C9 C10 Aromatics (Unadj.) 16.8 50 9.7ug/l JB C5- C8 Aliphatics ND 50 8.8 ug/l C9- C12 Aliphatics ND 50 8.0 ug/I

CAS No. Surrogate Recoveries Run#1 Run#2 Limits

> 2,3,4-Trifluorotoluene 84% 70-130% 2,3.4-Trifluorotoluene 86% 70-130%

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: BR-3

Lab Sample ID: MC47834-2

Matrix:

Project:

AQ - Ground Water

Method:

MADEP EPH REV 1.1 SW846 3510C BMSMC, Building 5 Area, Puerto Rico

Date Sampled: 09/14/16 Date Received: 09/16/16

Percent Solids: n/a

Run #1

File ID DE15701.D DF

Analyzed 10/01/16

By TA

Prep Date 09/26/16

Prep Batch OP48782

Analytical Batch **GDE875**

Run #2

Run #1

Run #2

Initial Volume Final Volume

975 ml

 $2.0 \, \mathrm{ml}$

Extractable TPHC Ranges

CAS No.	Compound	Result	RL	MDL	Unit
	C11-C22 Aromatics (Unadj.) C9-C18 Aliphatics C19-C36 Aliphatics C11-C22 Aromatics	ND ND ND	100 100 100 100	29 17 28 29	ug/l ug/l ug/l ug/l
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Lim	_
84-15-1 321-60-8 3386-33-2 580-13-2	o-Terphenyl 2-Fluorobiphenyl 1-Chlorooctadecane 2-Bromonaphthalene	97% 101% 79% 111%		40-1 40-1	40% 40% 40% 40%

Report of Analysis

Page 1 of 1

Client Sample ID: BR-4

Lab Sample ID: MC47834-3

Matrix:

AQ - Ground Water

Method:

MADEP VPH REV 1.1

Project:

BMSMC, Building 5 Area, Puerto Rico

Date Sampled: 09/14/16

Date Received: 09/16/16

Percent Solids: n/a

Analytical Batch GWX3842

Purge Volume

Run #1

 $5.0 \, \mathrm{ml}$

Run #2

Volatile TPHC Ranges

CAS No.	Compound	Result	RL	MDL	Units	Q
	C5- C8 Aliphatics (Unadj.) C9- C12 Aliphatics (Unadj.) C9- C10 Aromatics (Unadj.) C5- C8 Aliphatics C9- C12 Aliphatics	ND 9.5 14.2 ND ND	50 50 50 50 50	8.8 8.0 9.7 8.8 8.0	ug/l ug/l ug/l ug/l ug/l	JB JB
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Lim	its	
	2,3,4-Trifluorotoluene 2,3,4-Trifluorotoluene	85% 87%			30% 30%	

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: BR-4

Lab Sample ID:

MC47834-3

AQ - Ground Water

MADEP EPH REV 1.1 SW846 3510C

BMSMC, Building 5 Area, Puerto Rico

Date Sampled: 09/14/16

Date Received: 09/16/16

Percent Solids: n/a

Initial Volume Final Volume Run #1 910 ml $2.0 \, \mathrm{ml}$

Run #2

Matrix:

Method:

Project:

Extractable TPHC Ranges

CAS No.	Compound	Result	RL	MDL	Units	Q
	C11-C22 Aromatics (Unadj.) C9-C18 Aliphatics C19-C36 Aliphatics C11-C22 Aromatics	37.5 30.8 65.7 37.5	110 110 110 110	31 18 30 31	ug/l ug/l ug/l ug/l	J JB JB J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
84-15-1 321-60-8 3386-33-2 580-13-2	o-Terphenyl 2-Fluorobiphenyl 1-Chlorooctadecane 2-Bromonaphthalene	58% 77% 47% 85%		40-1 40-1	40% 40% 40% 40%	ı

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

By

AF

50

Page 1 of 1

Client Sample ID: MW-15 Lab Sample ID:

MC47834-4

Date Sampled: 09/14/16

Prep Date

n/a

8.0

ug/I

Ĵ

GWX3842

Matrix:

AQ - Ground Water

Date Received: 09/16/16

n/a

Method:

MADEP VPH REV 1.1

DF

Percent Solids: n/a

Project:

BMSMC, Building 5 Area, Puerto Rico

Analyzed

09/19/16

Prep Batch Analytical Batch

Run #1

Run #2

Run #2

Purge Volume

C9-C12 Aliphatics

Run #1

5.0 ml

File ID

WX77668.D

Volatile TPHC Ranges

CAS No.	Compound	Result	RL	MDL	Units	Q
	C5-C8 Aliphatics (Unadj.)	47.1	50	8.8	ug/l	J
	C9-C12 Aliphatics (Unadj.)	130	50	8.0	ug/l	
	C9- C10 Aromatics (Unadj.)	94.7	50	9.7	ug/l	В
	C5- C8 Aliphatics	27.7	50	8.8	ug/l	J

35.3

CAS No.	Surrogate Recoveries	Run#1	Run# 2	Limits
	2,3,4-Trifluorotoluene	86%		70-130%
	2,3,4-Trifluorotoluene	90%		70-130%

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: MW-15 Lab Sample ID:

MC47834-4

Matrix:

AQ - Ground Water

Method: Project:

MADEP EPH REV 1.1 SW846 3510C

BMSMC, Building 5 Area, Puerto Rico

Date Sampled: 09/14/16

J JB JB

Date Received: 09/16/16

Percent Solids: n/a

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	DE15703.D	1	10/01/16	TA	09/26/16	OP48782	GDE875
Run #2							

Initial Volume Final Volume

960 mE

 $2.0 \, \mathrm{ml}$

Run #1 Run #2

Extractable TPHC Ranges

CAS No.	Compound	Result	RL	MDL	Units
	C11-C22 Aromatics (Unadj.) C9-C18 Aliphatics C19-C36 Aliphatics C11-C22 Aromatics	80.1 76.0 29.7 75.2	100 100 100 100	30 17 28 30	ug/l ug/l ug/l ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its
84-15-1 321-60-8 3386-33-2	o-Terphenyl 2-Fluorobiphenyl 1-Chlorooctadecane	74% 86% 76%		40-1 40-1 40-1	40%
580-13-2	2-Bromonaphthalene	43%		40-1	40%

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: MW-14 Lab Sample ID:

MC47834-5

Matrix:

AQ - Ground Water

Method:

Project:

MADEP VPH REV 1.1

BMSMC, Building 5 Area, Puerto Rico

Date Sampled: 09/14/16

Date Received: 09/16/16

Percent Solids: n/a

	File ID	DF	Analyzed	Bv	Prep Date	Prep Batch	Analytical Batch
Run #1	WX77669.D	1	09/19/16	ΛF	n/a	n/a	GWX3842
Run #2							

Purge Volume $5.0 \, \mathrm{ml}$

Run #1 Run #2

Volatile TPHC Ranges

CAS No.	Compound	Result	RL	MDL	Units	Q
	C5- C8 Aliphatics (Unadj.) C9- C12 Aliphatics (Unadj.) C9- C10 Aromatics (Unadj.) C5- C8 Aliphatics C9- C12 Aliphatics	9.7 17.3 16.3 9.4 ND	50 50 50 50 50	8.8 8.0 9.7 8.8 8.0	ug/l ug/l ug/l ug/l ug/l	J JB JB J
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Lim	its	
	2,3,4-Trifluorotoluene 2,3,4-Trifluorotoluene	87% 89%			30% 30%	

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: MW-14 Lab Sample ID:

MC47834-5

Matrix: Method: AQ - Ground Water

MADEP EPH REV 1.1 SW846 3510C BMSMC, Building 5 Area, Puerto Rico

Date Sampled: 09/14/16

Date Received: 09/16/16

Percent Solids: n/a

Project:

Run #1 Run #2

File ID DE15704.D DF I

Analyzed By 10/01/16 TA

09/26/16

Prep Date

Prep Batch OP48782

Analytical Batch **GDE875**

Run #1

Run #2

Initial Volume Final Volume

900 ml

 $2.0 \, \mathrm{ml}$

Extractable TPHC Ranges

CAS No.	Compound	Result	RL	MDL	Units	Q
	C11-C22 Aromatics (Unadj.) C9-C18 Aliphatics C19-C36 Aliphatics C11-C22 Aromatics	ND ND ND ND	110 110 110 110	32 19 30 32	ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Lim	ts	

CAS NO.	Surrogate Recoveries	Run# 1	Kun# 2	Limits
84-15-1 321-60-8 3386-33-2 580-13-2	o-Terphenyl 2-Fluorobiphenyl 1-Chlorooctadecane 2-Bromonaphthalene	96% 91% 75% 101%		40-140% 40-140% 40-140% 40-140%
300-13-2	2-Dionanaphinatene	10170		40-14076

RL = Reporting Limit E = Indicates value exceeds calibration range

MDL = Method Detection Limit

J = Indicates an estimated value B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: S-39D

MC47834-6

Lab Sample ID:

AQ - Ground Water

Matrix: Method:

MADEP VPH REV 1.1

Project:

BMSMC, Building 5 Area, Puerto Rico

Date Sampled: 09/15/16

Date Received: 09/16/16

Percent Solids: n/a

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 WX77670.D 09/19/16 AF n/a n/a GWX3842 Run #2

Purge Volume

Run #1

 $5.0 \, \mathrm{ml}$

Run #2

Volatile TPHC Ranges

CAS No.	Compound	Result	RL	MDL	Units	Q
	C5- C8 Aliphatics (Unadj.) C9- C12 Aliphatics (Unadj.) C9- C10 Aromatics (Unadj.) C5- C8 Aliphatics	12.7 8.2 12.1 12.5	50 50 50 50	8.8 8.0 9.7 8.8	ug/l ug/l ug/l ug/l	J JB JB J
	C9- C12 Aliphatics	ND	50	8.0	ug/I	

CAS No.	Surrogate Recoveries	Run#1	Run# 2	Limits
	2,3,4-Trifluorotoluene	86%		70-130%
	2.3.4-Trifluorotoluene	8894		70.130%

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: S-39D Lab Sample ID:

MC47834-6

Matrix:

Method:

AQ - Ground Water

MADEP EPH REV 1.1 SW846 3510C BMSMC, Building 5 Area, Puerto Rico

Date Sampled: 09/15/16 Date Received: 09/16/16

Percent Solids: n/a

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	DE15705.D	1	10/01/16	TΛ	09/26/16	OP48782	GDE875
T) . #9							

Run #2

Project:

Initial Volume Final Volume

Run #1 Run #2 900 ml

 $2.0 \, \mathrm{ml}$

Extractable TPHC Ranges

CAS No.	Compound	Result	RL	MDL	Units	Q
	C11-C22 Aromatics (Unadj.) C9-C18 Aliphatics C19-C36 Aliphatics C11-C22 Aromatics	ND ND 32.3 ND	110 110 110 110	32 19 30 32	ug/l ug/l ug/l ug/l	JB
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Lim	its	
84-15-1 321-60-8 3386-33-2 580-13-2	o-Terphenyl 2-Fluorobiphenyl 1-Chlorooctadecane 2-Bromonaphthalene	93% 99% 82% 102%		40-1 40-1	40% 40% 40% 40%	

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: Lab Sample ID:

RA-10D MC47834-7

Matrix:

AQ - Ground Water

Method:

MADEP VPH REV 1.1

Project:

BMSMC, Building 5 Area, Puerto Rico

Date Sampled: 09/15/16 Date Received: 09/16/16

Percent Solids: n/a

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 WX77671.D 09/19/16 AF n/a n/a GWX3842 Run #2

Purge Volume

Run #1 $5.0 \, \mathrm{ml}$

Run #2

Volatile TPHC Ranges

CAS No.	Compound	Result	RL	MDL	Units	Q
	C5- C8 Aliphatics (Unadj.) C9- C12 Aliphatics (Unadj.) C9- C10 Aromatics (Unadj.) C5- C8 Aliphatics C9- C12 Aliphatics	79.2 75.7 51.0 72.6 22.7	50 50 50 50 50	8.8 8.0 9.7 8.8 8.0	ug/l ug/l ug/l ug/l ug/l	B B
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Lim	its	
	2,3,4-Trifluorotoluene 2,3,4-Trifluorotoluene	87% 89%			30% 30%	

By

TA

Prep Date

09/26/16

Page 1 of 1

Client Sample ID: RA-10D Lab Sample ID:

MC47834-7

Date Sampled: 09/15/16

Matrix:

AQ - Ground Water

DF

Date Received: 09/16/16

Method:

MADEP EPH REV 1.1 SW846 3510C

Analyzed

10/01/16

Percent Solids: n/a

Project:

BMSMC, Building 5 Area, Puerto Rico

Analytical Batch

Run #1 Run #2

DE15706.D

File ID

Prep Batch OP48782

GDE875

Initial Volume Final Volume 950 ml

2.0 ml

Run #1 Run #2

Extractable TPHC Ranges

CAS No.	Compound	Result	RL	MDL	Units	Q
	C11-C22 Aromatics (Unadj.) C9-C18 Aliphatics C19-C36 Aliphatics	42.7 ND 29.0	110 110 110	30 18 29	ug/l ug/l ug/l	J JB
	C11-C22 Aromatics	42.0	110	30	ug/l	J

CAS No.	Surrogate Recoveries	Run#1	Run# 2	Limits
84-15-1	o-TerphenyI	82%		40-140%
321-60-8	2-Fluorobiphenyl	90%		40-140%
3386-33-2	1-Chlorooctadecane	67%		40-140%
580-13-2	2-Bromonaphthalene	104%		40-140%

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: MC47834

Account: AMANYWP Anderson Mulholland and Assoc.

Project: BMSMC, Building 5 Area, Puerto Rico

Sample MC47834-1MS MC47834-1MSD MC47834-1	File ID WX77662.D WX77663.D WX77661.D	DF I 1	Analyzed 09/19/16 09/19/16 09/19/16	By AF AF AF	Prep Date n/a n/a n/a	Prep Batch n/a n/a n/a	Analytical Batch GWX3842 GWX3842 GWX3842
--	--	--------------	--	----------------------	-----------------------	---------------------------------	---

The QC reported here applies to the following samples:

Method: MADEP VPH REV 1.1

Page 1 of 1

MC47834-1, MC47834-2, MC47834-3, MC47834-4, MC47834-5, MC47834-6, MC47834-7

CAS No.	Compound	MC47834 ug/l (MS ug/l	MS %	Spike ug/l	MSD ug/l	MSD %	RPD	Limits Rec/RPD
	C5- C8 Aliphatics (Unadj.) C9- C12 Aliphatics (Unadj.) C9- C10 Aromatics (Unadj.)	19.9 J 102 E 74.0 E		349 497 195	110 99 81	300 450 150	362 488 196	114 96 82	4 2 1	70-130/25 70-130/25 70-130/25
CAS No.	Surrogate Recoveries	MS	MSD	M	C47834-1	Limits				
	2,3,4-Trifluorotoluene 2,3,4-Trifluorotoluene	85% 88%	85% 88%	83 84		70-1309 70-1309				

^{* =} Outside of Control Limits.

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: MC47834

Account: AMANYWP Anderson Mulholland and Assoc.

Project: BMSMC, Building 5 Area, Puerto Rico

Sample OP48782-MS OP48782-MSD MC47834-1	File ID DE15698.D DE15699.D DE15700.D	DF 1 1	Analyzed 10/01/16 10/01/16 10/01/16	By TA TA TA	Prep Date 09/26/16 09/26/16 09/26/16	Prep Batch OP48782 OP48782 OP48782	Analytical Batch GDE875 GDE875 GDE875
--	--	--------------	--	----------------------	---	---	--

The QC reported here applies to the following samples:

Method: MADEP EPH REV 1.1

MC47834-1, MC47834-2, MC47834-3, MC47834-4, MC47834-5, MC47834-6, MC47834-7

CAS No.	Compound	MC47834- ug/l Q	di de	MS ug/l	MS %	Spike ug/l	MSD ug/l	MSD %	RPD	Limits Rec/RPD
	C11-C22 Aromatics (Unadj.) C9-C18 Aliphatics C19-C36 Aliphatics	74.2 J ND 29.4 JI	870 326 3 435	910 218 397	96 67 85	833 312 417	811 171 308	88 55 67	12 24 25	40-140/25 40-140/25 40-140/25
CAS No.	Surrogate Recoveries	MS	MSD	MC	47834-1	Limits				
84-15-1 321-60-8 3386-33-2 580-13-2	o-Terphenyl 2-Fluorobiphenyl 1-Chlorooctadecane 2-Bromonaphthalene	104% 93% 83% 91%	92% 98% 61% 95%	78% 88% 82% 1029		40-1409 40-1409 40-1409 40-1409	6 6			

Page 1 of 1

^{* =} Outside of Control Limits:

CHAIN OF CUSTODY

PAGE _/ OF _

NE			36 D'Angelo De , Bolding One, Marthurough, MA 01753 TEL 508-481-4200 FAXC, 508-481-7753					7	772	378	9 1/80	F	et fro	MC	7834				
CSent / Reporting Information	NAME OF STREET	RECORD DOW	- Best -	Mone	Acceptant	Page 100	W1556	and the same	and the same	-	2000	ditto	-						
Company Name	Project Here:		Project	Minn	untion	200	Esse	The pass	05755		-	26(3)	Reque	eted Ane	yels (see	TEST C	ODE sheet	1 6232	Matrix Codes
Anderson Mulholland & Associates	BMSMC 3-4	Quarter Group	duntas Bro-																DW - Drotting Wa
Sever Address	Sreet	STATE OF DELIVERY	CHARGE SOM	-	W18		Chair			w 500	Cong								CIW - Greated West
2790 West; hester Avenue, Suita 417				Balling	-	ton (of alle	lease I	and the	port tol	F				1			11	1.1	SW - Serieza Was
Cay Size Za	Cay	321-	Sterio PR											1	RL- Rivings SED-Sedmont				
Purchage NY 19577 Project Contact E-regit	Humecao Project 9	_	PH	Street /	Street Address.							1 1		1 1	DI-OI				
Terry Taylor	02d 2016								1	8				1 1	LEG = Other Lineals AR = All				
Phone II Fau II	Close Purchase	Order #		Cay finais Zip				S)			· f			1	SOL - Other Sole WP - West				
914-251-0400 Semple(s) (semple) Phone II	Pronci Materia			-				-			_	y						1 1	FB-Feld Stank EB-Equipment Blan
M. Rivera, R. Siuert, J.D. Valle, D. Lindstrand	Terry Taylor				m.							æ		4 1					765-Films Starts 16-Tep Starts
The state of the s	10.17.10100		Colombo	_		Т		North	-	-	-	E	夏	3					
Field ED / Point of Collection	MECHO! Val s	-	Tima	24				9	N N	ė	INCOM.	BWAE	WAA	14					LAB USE ONLY
+ BR-2	- 5	9-13-16	1605	4/0	GW	5	15	Ħ	11	11		X	X						
-II BR-ZMS		9-13-16	1622	Ale	GW	1	14	11	11	11		X	1	\perp					
BR-2 MSD	- 0	9-13-16	1/20	ALA	GW	12	17	Ħ	++	††		V	2	1	_	+-+	_	\vdash	
-2 BR-3		9-14-16	/256	Ne	GW.	13	仕	H	++	++	++	7	X	11	-	1	_	\vdash	-
-1 BR-4		9-14-16	1456	1/1	Gil	2	감	H	++	++	-1-1	-	5	1	-	1	-	-	100
-y MW-15,		0-14-16	1331	WR.	-	15	칻	₩	++	++	+	7	51	+-1	+	+	-		198
7 10 10 15			1692	MK	5W	5	12	++	++	+	+	٨	7	+	-	++			-
-T MW-14		9-4-6	1727	NR	6W	5	2	H	11	11	11	1	X.		-	\perp		<u> </u>	3)2
-4 5-39D		9-15-16	1347	NR	GW	5	5	Ц	11	11	11	X	X						1
7 RA-10D		9-15-16	1352	NR	6N	5	5	H	₩	H	+1	X	X	11		\vdash			
						-	H	H	++	H	H	-	+	+	+	+	+	\vdash	
		2000	St. State	26	5070	freeze		Ħ	Ħ	Ħ	Ħ	24	£0.8		10/1 7/2		de ess		Time and
Terranound Titre (Business days)	against house many	STATE OF THE R.	SENSON STATE	tires-gr					far rivolds			979.469	Printers.	North Park	Cor	teerts /	Special Institu	done You'r	that person that
Bit. 10 Sustract Cops (by Contract only) 10 Day RUSH 5 Day RUSH	Approved By (Appro			冒	TULLT1 (iol "A" (L iol "B" (L Lavel 3+4 ad	Z)			IYASP (IYASP (Mata Fai 200 Fei	Catago 1746		+						
1 Day EMBRGENCY 2 Day EMBRESENCY		_						-	_				INITI	AL ASE	SSMENT	wo			
1 Day EMERGENCY Emergency & Rush TIA and an already VIA Labora					1.0	Communic NJ Reduce	nd - Pa	-	DC Surv	mary - I	Person P	نحل ببحا			LABE	LVER	FICATION	لين ا	
100 Water 19:15-1	6 700	Fed	FX	ented be	Now eacl	time as		charg ded by		MARKET,		4	urter dell		11 95	-	W /	LA	1/4
Farmer by Samuel		3					dalmari 4	-			(cap	1/		117		-	750	-	
Refrequented by: Coin Thiss:		5					25	125	3, 25	54	U :		Proc	-	-	14	On too	Carte	Inn. 1.7 5 3.3 4

EXECUTIVE NARRATIVE

SDG No: MC47834 Laboratory: Accutest, Massachusetts

Analysis: MADEP EPH Number of Samples: 9

Location: BMSMC, Building 5 Area

Humacao, PR

SUMMARY: Nine (9) samples were analyzed for Extractables TPHC Ranges by method MADEP

EPH. Samples were validated following the METHOD FOR THE DETERMINATION OF EXTRACTABLE PETROLEUM HYDROCARBONS (EPH) quality control criteria, Massachusetts Department of Environmental Protection, Revision 1.1 (2004). Also the general validation guidelines promulgated by the USEPA Hazardous Wastes Support Section. The QC criteria and data validation actions listed on the data review worksheets

are from the primary guidance document, unless otherwise noted.

Results are valid and can be used for decision making purposes.

Critical issues: None Major: None Minor: None

Critical findings: None Major findings: None

Minor findings: 1. Initial and continuing calibration meets method specific requirements.

Closing calibration included in data package. Closing calibration meets method specific requirements except for the cases described in the Data Review Worksheet. C19-C36 aliphtic hydrocarbons qualified as estimated

(J) or (UJ) in affected samples.

2. Analytes detected in method blank at a concentration below the reporting limits. Analytes detected in sample batch above MDL but below the reporting limits. Laboratory qualified the results as JB. Sample results below the reporting limit are qualified undetected (U) at the reporting limit reporting limit (notice level are retained).

limits; results above the reporting limit/action level are retained.

COMMENTS: Results are valid and can be used for decision making purposes.

Reviewers Name: Rafael Infante

Chemist License 1888

Signature: Rafuel Infant

Date: October 6, 2016

SAMPLE ORGANIC DATA SAMPLE SUMMARY

Sample ID: MC47834-1

Sample location: BMSMC Building 5 Area

Sampling date: 9/13/2016

Matrix: Groundwater

METHOD: MADEP EPH

Analyte Name	Result	Units D	ilution Factor	Lab Flag	Validation	Reportable
Ç11 - C22 Aromatics (Unadj.)	74.2	ug/L	1	-	-	Yes
Ç9 - C18 Aliphatics	110	ug/L	1	-	U	Yes
Ç19 - C36 Aliphatics	29.4	ug/L	1	JB	U	Yes
Ç11 - C22 Aliphatics	73.6	ug/L	1	J	J	Yes

Sample ID: MC47834-2

Sample location: BMSMC Building 5 Area

Sampling date: 9/12/2016

Matrix: Groundwater

Analyte Name	Result	Units D	ilution Factor	Lab Flag	Validation	Reportable
Ç11 - C22 Aromatics (Unadj.)	100	ug/L	1	-	U	Yes
Ç9 - C18 Aliphatics	100	ug/L	1	-	U	Yes
Ç19 - C36 Aliphatics	100	ug/L	1	-	UJ	Yes
Ç11 - C22 Aliphatics	100	ug/L	1	-	U	Yes

Sample ID: MC47834-3

Sample location: BMSMC Building 5 Area

Sampling date: 9/14/2016

Matrix: Groundwater

METHOD: MADEP EPH

Analyte Name	Result	Units D	Dilution Factor	Lab Flag	Validation	Reportable
Ç11 - C22 Aromatics (Unadj.)	37.5	ug/L	1	J	J	Yes
Ç9 - C18 Aliphatics	30.8	ug/L	1	JB	U	Yes
Ç19 - C36 Aliphatics	65.7	ug/L	1	JB	U	Yes
Ç11 - C22 Aliphatics	37.5	ug/L	1	J	J	Yes

Sample ID: MC47834-4

Sample location: BMSMC Building 5 Area

Sampling date: 9/14/2016

Matrix: Groundwater

Analyte Name	Result	Units Di	lution Factor	Lab Flag	Validation	Reportable
Ç11 - C22 Aromatics (Unadj.)	80.1	ug/L	1	-	-	Yes
Ç9 - C18 Aliphatics	76.0	ug/L	1	-	U	Yes
Ç19 - C36 Aliphatics	29.7	ug/L	1	-	UJ	Yes
Ç11 - C22 Aliphatics	75.2	ug/L	1	-	-	Yes

Sample ID: MC47834-5

Sample location: BMSMC Building 5 Area

Sampling date: 9/14/2016

Matrix: Groundwater

METHOD: MADEP EPH

Analyte Name	Result	Units Di	lution Factor	Lab Flag	Validation	Reportable
Ç11 - C22 Aromatics (Unadj.)	110	ug/L	1	-	U	Yes
Ç9 - C18 Aliphatics	110	ug/L	1	-	U	Yes
Ç19 - C36 Aliphatics	110	ug/L	1	-	UJ	Yes
Ç11 - C22 Aliphatics	110	ug/L	1	-	U	Yes

Sample ID: MC47834-6

Sample location: BMSMC Building 5 Area

Sampling date: 9/15/2016

Matrix: Groundwater

Analyte Name	Result	Units D	ilution Factor	Lab Flag	Validation	Reportable
Ç11 - C22 Aromatics (Unadj.)	110	ug/L	1	-	U	Yes
Ç9 - C18 Aliphatics	110	ug/L	1	-	U	Yes
Ç19 - C36 Aliphatics	32.3	ug/L	1	JB	U	Yes
C11 - C22 Aliphatics	110	ug/L	1	_	U	Yes

Sample ID: MC47834-7

Sample location: BMSMC Building 5 Area

Sampling date: 9/15/2016 Matrix: Groundwater

METHOD: MADEP EPH

Analyte Name	Result	Units Di	lution Factor	Lab Flag	Validation	Reportable
Ç11 - C22 Aromatics (Unadj.)	42.7	ug/L	1	J	J	Yes
Ç9 - C18 Aliphatics	110	ug/L	1	-	U	Yes
Ç19 - C36 Aliphatics	29.0	ug/L	1	JB	U	Yes
Ç11 - C22 Aliphatics	42.0	ug/L	1	J	J	Yes

Sample ID: MC47834-1MS

Sample location: BMSMC Building 5 Area

Sampling date: 9/13/2016

Matrix: Groundwater

Analyte Name	Result	Units D	ilution Factor	Lab Flag	Validation	Reportable
Ç11 - C22 Aromatics (Unadj.)	910	ug/L	1	-	-	Yes
Ç9 - C18 Aliphatics	218	ug/L	1	-	-	Yes
Ç19 - C36 Aliphatics	397	ug/L	1	-	J	Yes

Sample ID: MC47834-1MSD

Sample location: BMSMC Building 5 Area

Sampling date: 9/13/2016 Matrix: Groundwater

Analyte Name	Result	Units I	Dilution Factor	Lab Flag	Validation	Reportable
Ç11 - C22 Aromatics (Unadj.)	811	ug/L	1	-	-	Yes
Ç9 - C18 Aliphatics	171	ug/L	1	-	-	Yes
Ç19 - C36 Aliphatics	308	ug/L	1	-	J	Yes

DATA REVIEW WORKSHEETS

Type of validation	Full:X Limited:	Project Number: _MC47834
REVIEW OF EXT	RACTABLE PETROLE	EUM HYDROCARBON (EPHs) PACKAGE
validation actions. This more informed decision were assessed according precedence METHOD HYDROCARBONS (VF (2004). Also the gener Support Section. The Q	document will assist the n and in better serving ting to the data validation FOR THE DETERNICH), Massachusetts Depart validation guidelines	le organics were created to delineate required reviewer in using professional judgment to make the needs of the data users. The sample results on guidance documents in the following order of MINATION OF EXTRACTABLE PETROLEUM artment of Environmental Protection, Revision 1.1 promulgated by the USEPA Hazardous Wastes ation actions listed on the data review worksheets is otherwise noted.
The hardcopied (laboreceived has been review for SVOCs included)	ewed and the quality con	t_Laboratories data package atrol and performance data summarized. The data
Lab. Project/SDG No.: _ No. of Samples: Field blank No.: Equipment blank No.: _	9	Sample matrix: _Groundwater
Field duplicate No.:		
X Data CompletX Holding TimesN/A GC/MS TuningN/A Internal StandX BlanksX Surrogate RecX Matrix Spike/N	eness ard Performance coveries	X Laboratory Control Spikes X Field Duplicates X Calibrations X Compound Identifications X Compound Quantitation X Quantitation Limits
Overall _Extractable_Petroleum (C9_to_C36_Aliphatics;	n_Hydrocarbons_by_GC _C11_to_C22_(Aromatic	Comments: _by_Method_MADEP_EPH,_REV_1.1
Definition of Qualifiers:		
J- Estimated resul U- Compound not R- Rejected data UJ- Estimated nond Reviewer: 0005/2016	detected	···

		Criteria were not	met and/or see below
I.	DATA COMPLETNE A. Data Packag		
MISS	SING INFORMATION	DATE LAB. CONTACTED	DATE RECEIVED
B. ——	Other	-	Discrepancies:
B.	Other		Discrepancies:
B	Other		Discrepancies:
B	Other		Discrepancies:
B.	Other		Discrepancies:
B	Other		Discrepancies:

All criteria were metX	
Criteria were not met and/or see below	

HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of extraction, and subsequently from the time of extraction to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

SAMPLE ID	DATE SAMPLED	DATE EXTRACTED	DATE ANALYZED	ACTION
Samples extra	acted and analyz	ed within method	recommended ho	Iding time. Sample
·		ation within the re		- ,
			-	-
-				

Criteria

Preservation:

Aqueous samples must be acidified to a pH of 2.0 or less at the time of collection.

Soil samples must be cooled at 4 ± 2 °C immediately after collection.

Holding times:

Samples must be extracted within 14 days of collection, and analyzed within 40 days of extraction.

Cooler tempera	ture (Criteria	: 4 <u>+</u> 2 °C):_	4.1°C	
----------------	----------------	----------------------	-------	--

Actions: Qualify positive results/nondetects as follows:

If holding times are exceeded, estimate positive results (J) and nondetects (UJ). If holding times are grossly exceeded, use professional judgment to qualify data. The data reviewer may choose to estimate positive results (J) and rejects nondetects (R). If samples were not at the proper temperature (> 10°C) or improperly preserved, use professional judgment to qualify the results.

All criteria were metX Criteria were not met and/or see below						
CALIBRAT	CALIBRATIONS VERIFICATION					
ensure tha	Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.					
Dat	e of initial calib	ration:08/05	5/16			
Dat	Dates of initial calibration verification:08/05/16					
inst	rument ID num	bers:GCD	E			
Mat	Matrix/Level:AQUEOUS/MEDIUM					
DATE LAB FILE ANALYTE CRITERIA OUT SAMPLES ID# RFs, %RSD, %D, r AFFECTED						
1-:4:		125 41				
Initi	ai and initial ca	libration verification	meet method specific r	equirements		
			<u>.</u>	<u> </u>		

Criteria- ICAL

- Five point calibration curve.
- The percent relative standard deviation (%RSD) of the calibration factor must be equal to or less than 25% over the working range for the analyte of interest.
 When this condition is met, linearity through the origin may be assumed, and the average calibration factor is used in lieu of a calibration curve.
- A collective calibration factor must also be established for each hydrocarbon range of interest. Calculate the collective CFs for C9-C18 Aliphatic Hydrocarbons, C19-C36 Aliphatic Hydrocarbons, and C11-C22 Aromatic Hydrocarbons using the FID chromatogram. Tabulate the summation of the peak areas of all components in that fraction against the total concentration injected. The %RSD of the calibration factor must be equal to or less than 25% over the working range for the hydrocarbon range of interest.
 - The area for the surrogates must be subtracted from the area summation of the range in which they elute.
 - The areas associated with naphthalene and 2-methylnaphthalene in the aliphatic range standard must be subtracted from the uncorrected collective C9-C18 Aliphatic Hydrocarbon range area prior to calculating the CF.

DATA REVIEW WORKSHEETS

Criteria- CCAL

- At a minimum, the working calibration factor must be verified on each working day, after every 20 samples or every 24 hours (whichever is more frequent), and at the end of the analytical sequence by the injection of a mid-level continuing calibration standard to verify instrument performance and linearity.
- If the percent difference (%D) for any analyte varies from the predicted response by more than ±25%, a new five-point calibration must be performed for that analyte. Greater percent differences are permissible for n-nonane. If the %D for n-nonane is greater than 30, note the nonconformance in the case narrative. It should be noted that the %Ds are calculated when CFs are used for the initial calibration and percent drifts are calculated when calibration curves using linear regression are used for the initial calibration.

Actions:

If %RSD > 25% for target compounds or a correlation coefficient < 0.99, estimate positive results (J) and use professional judgment to qualify nondetects. If % D > 25% (> 30 for nonane), estimate positive results (J) and nondetects (UJ).

CALIBRATIONS VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Date of initial calibration:08/05/16
Dates of continuing calibration verification:09/28/16;_10/01/16;_10/03/16
Dates of final calibration verification:09/28/16;_10/01/16;_10/03/16
Instrument ID numbers:GCDE
Matrix/Level:AQUEOUS/MEDIUM

		· · · · · · · · · · · · · · · · · · ·					
DATE	LAB FILE	ANALYTE	CRITERIA OUT	SAMPLES			
		''''''					
	ID#		RFs, %RSD, %D, r	AFFECTED			
		-					
	Initial and continuing calibration meets method specific requirements. Closing calibration included in data package. Continuing and ending calibration meets method specific						
require			bed in this document.				
	qualified as estimated (J) in affected samples.						
10/01/16	cc843-50	C19-C36 Aliphatics	29.2 %	MC47834-1; -2; -4; -			
10/01/16	cc843-50	C19-C36 Aliphatics	29.3 %	5; -6; -7; MC47834-			
				1MS/-1MSD			

A separate worksheet should be filled for each initial curve

case, or if the p Method Blank			ere is an inherent v	ariability in the data for the
aetermine if sar	must be run a mple carryover	isolated occ after sample	urrence not affectin s suspected of bei	ng other data. A Laboratory ing highly contaminated to
ist the contam separately.	ination in the	blanks belov	v. High and low lev	els blanks must be treated
_aboratory blan	ks			
DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
				CRITERIA_EXCEPT_IN_
09/28/16	OP48782-M	BAq./low		s32.7_ug/l
			C19-C36_Aliphati 	ics39.4_ug/l
li r k	imits. Analyteseporting limits below the rep	s detected i b. Laboratory orting limit a	in sample batch a	ntration below the reporting above MDL but below the alts as JB. Sample results ected (U) at the reporting evel are retained.
Field/Trip/Equip	ment			
DATE	LAB ID	LEVEL/	COMPOUND	CONCENTRATION

Note:

All criteria were metX
Criteria were not met and/or see below

V B. BLANK ANALYSIS RESULTS (Section 3)

Blank Actions

The ALs for samples which have been diluted should be corrected for the sample dilution factor and/or % moisture, where applicable. Peaks must not be detected above the Reporting Limit within the retention time window of any analyte of interest. The hydrocarbon ranges must not be detected at a concentration greater than 10% of the most stringent MCP cleanup standard. Specific actions area as follows:

If the concentration is < sample quantitation limit (SQL) and < AL, report the compound as not detected (U) at the SQL.

If the concentration is \geq SQL but < AL, report the compound as not detected (U) at the reported concentration.

If the concentration is > AL, report the concentration unqualified.

All criteria were metX_	
Criteria were not met and/or see below	

SURROGATE SPIKE RECOVERIES

Laboratory performance of individual samples is established by evaluation of surrogate spike recoveries. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

List the percent recoveries (%Rs) which do not meet the criteria for surrogate recovery. Matrix: solid/aqueous

SAMPLE ID	SURROG S1	ATE COMPOL S2	JND S3	S4	ACTION
SURROGATE LIMITS.	_STANDAR	DS_RECOVER	RIES_WITHIN_	LABORA	TORY_CONTROL
2					
S1 = o-Terphen			S2 = 2-Fluoro		
S3 = 1-Chlorood QC Limits (%)*		U-14U%	S4 = 2-Brom	onaphtha	lene 40-140%
_LL_to_UL_ QC Limits* (Soli	40_to_140_	_40_to_140_	_40_to_140	40_t	o_140_
_LL_to_UL_		to	to	to_	

Note:

It is recommended that surrogate standard recoveries be monitored and documented on a continuing basis. At a minimum, when surrogate recovery from a sample, blank, or QC sample is less than 40% or more than 140%, check calculations to locate possible errors, check the fortifying standard solution for degradation, and check changes in instrument performance.

If the cause cannot be determined, reanalyze the sample unless one of the following exceptions applies:

- (1) Obvious interference is present on the chromatogram (e.g., unresolved complex mixture);
- (2) The surrogate exhibits high recovery and associated target analytes or hydrocarbon ranges are not detected in sample.

If a sample with a surrogate recovery outside of the acceptable range is not reanalyzed based on any of these aforementioned exceptions, this information must be noted on the data report form and discussed in the Executive Report. Analysis of the sample on dilution may diminish matrix-related surrogate recovery problems. This approach can be used as long as the reporting limits to evaluate applicable MCP standards can still be achieved with the dilution. If not, reanalysis without dilution must be performed.

All criteria were met _	_X
Criteria were not met and/or see below	

VII. A MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples.

At the request of the data user, and in consideration of sample matrices and data quality objectives, matrix spikes and matrix duplicates may be analyzed with every batch of 20 samples or less per matrix.

- Matrix duplicate Matrix duplicates are prepared by analyzing one sample in duplicate. The purpose of the matrix duplicates is to determine the homogeneity of the sample matrix as well as analytical precision. The RPD of detected results in the matrix duplicate samples must not exceed 50 when the results are greater than 5x the reporting limit.
- The desired spiking level is 50% of the highest calibration standard. However, the total concentration in the MS (including the MS and native concentration in the unspiked sample) should not exceed 75% of the highest calibration standard in order for a proper evaluation to be performed. The purpose of the matrix spike is to determine whether the sample matrix contributes bias to the analytical results. The corrected concentrations of each analyte within the matrix spiking solution must be within 40 140% of the true value. Lower recoveries of n-nonane are permissible but must be noted in the narrative if <30%.</p>

MS/MSD Recov	eries and Precision Cri	teria			
Sample ID:N	MC47834-1	<u> </u>		Matrix/Level:_(3roundwater_
List the %Rs, R	PD of the compounds v	vhich do no	t meet t	he QC criteria.	
MS OR MSD	COMPOUND	% R	RPD	QC LIMITS	ACTION
		·			

Note: MS/MSD % recoveries and RPD within laboratory control limits.

		Crite	ria were no	All criteria	were met belowN/A
No action is taken of informed profession conjunction with othe data. In those insta affect only the samp However, it may be a systematic proble associated samples.	al judgment, the QC criteriances where it ble spiked, the determined through in the analysis.	he data and deter can be determined qualification to the least the	reviewer named the reduced the reduced the reviewer mined the reduced the redu	nay use the MS need for some qu that the results I be limited to thi esults that the lab	/MSD results in the control of the MS/MS is sample alone oratory is having
2. MS/MSD – U	nspiked Comp	ounds			
List the concentratio compounds in the ur					
COMPOUND	CONCENTR SAMPLE	ATION MS	MSD	%RPD	ACTION

					B) 34
Criteria: None specif	ied, use %RSD) <u><</u> 50 as	professiona	al judgment.	
Actions:					
If the % PSD > 50 a	ualify the recul	te in the s	eniked sam	nla se actimata (I)

If the % RSD > 50, qualify the results in the spiked sample as estimate (J). If the % RSD is not calculable (NC) due to nondetect value in the sample, MS, and/or MSD, use professional judgment to qualify sample data.

A separate worksheet should be used for each MS/MSD pair.

			Criteria		and/or see below
	VIII.	LABORATORY CON	TROL SAMPL	E (LCS/LCSD) ANALYSIS
matric		ata is generated to de	termine accura	cy of the anal	lytical method for various
	1.	LCS Recoveries Crite	eria		
		List the %R of compo	ounds which do	not meet the	criteria
LCS I)	COMPOUND	% R	QC LIMIT	ACTION
LCS	S_RECC	OVERY_WITHIN_LAB	ORATORY_CO	ONTROL_LIM	TS
	2 - 2 11 11		ш		
		Refer to QAPP for sp The spike recovery m n-nonane are permis nonconformance in must be < 25%. s: s on LCS recovery sl	nust be betwee sible. If the recthe executive nould be base	covery of n-no narrative. Rf	40%. Lower recoveries of conane is <30%, note the PD between LCS/LCSD enumber of compounds tude of the excedance of
the as: If the for the If more qualify	sociated %R of the affected than h	ne analyte is > UL, quality is amples and accept the analyte is < LL, quality in the associal and the compounds in itive results as (J) and	nondetects. palify all positive pated samples. The LCS are no	e results (j) a	or the affected analyte in and reject (R) nondetects equired recovery criteria, Il target analyte(s) in the
2.	Freque	ency Criteria:			
per ma If no, t the eff	atrix)? <u>Y</u> he data ect and	es or No. may be affected. Use	e professional	judgment to d	natrix (1 per 20 samples determine the severity of low and list the samples

	All o Criteria were not met an	criteria were met id/or see below _	
IX.	FIELD/LABORATORY DUPLICATE PRECISION		
Sampl	e IDs:	Matrix:	

Field/laboratory duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which measures only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples.

COMPOUND	SQL	SAMPLE CONC.	DUPLICATE CONC.	RPD	ACTION
No field/laboratory	duplicate	analyzed with this	data package. MS/N	//SD % re	ecovery RPD
			tory and validation gestions on the concentration of 5		document

Criteria:

The project QAPP should be reviewed for project-specific information. RPD \pm 30% for aqueous samples, RPD \pm 50 % for solid samples if results are \geq SQL. If both samples and duplicate are \leq 5 SQL, the RPD criteria is doubled.

SQL = soil quantitation limit

Actions:

If both the sample and the duplicate results are nondetects (ND), the RPD is not calculable (NC). No action is needed.

Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria.

If one sample result is not detected and the other is > 5x the SQL qualify (J/UJ).

Note: If SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate.

If one sample value is not detected and the other is < 5x the SQL, use professional judgment to determine if qualification is appropriate.

All criteria were met	X
Criteria were not met and/or see below	

XI. COMPOUND IDENTIFICATION

The compound identification evaluation is to verify that the laboratory correctly identified target analytes as well as tentatively identified compounds (TICs).

- 1. Verify that the target analytes were within the retention time windows.
 - Retention time windows must be re-established for each Target EPH Analyte each time a new GC column is installed, and must be verified and/or adjusted on a daily basis.
 - o The n-nonane (n-C9) peak must be adequately resolved from the solvent front of the chromatographic run.
 - o All surrogates must be adequately resolved from the Aliphatic Hydrocarbon and Aromatic Hydrocarbon standards.
 - o For the purposes of this method, adequate resolution is assumed to be achieved if the height of the valley between two peaks is less than 25% of the average height of the two peaks.
 - o The n-pentane (C5) and MtBE peaks must be adequately resolved from any solvent front that may be present on the FID and PID chromatograms, respectively.
- 1a. Aliphatic hydrocarbons range:
 - o Determine the total area count for all peaks eluting 0.1 minutes before the retention time (Rt) for n-C9 and 0.01 minutes before the Rt for n-C19.
 - o Determine the total area count for all peaks eluting 0.01 minutes before the Rt for n-C19 and 0.1 minutes after the Rt for n-C36.

Are the aliphatic hydrocarbons range properly determined? Yes? or No?

Comments:

- 1b. Aromatic hydrocarbons range:
 - o Determine the total area count for all peaks eluting 0.1 minutes before the retention time (Rt) for naphthalene and 0.1 minutes after the Rt for benzo(g,h,i)perylene.
 - o Determine the peak area count for the sample surrogate (OTP) and fractionation surrogate(s). Subtract these values from the collective area count value.

Are the aliphatic hydrocarbons range properly determined?

Yes? or No?

Comments:

All criteria were met	X
Criteria were not met and/or see below	

XII. QUANTITATION LIMITS AND SAMPLE RESULTS

The sample quantitation evaluation is to verify laboratory quantitation results.

In order to demonstrate the absence of aliphatic mass discrimination, the response ratio of C28 to C20 must be at least 0.85. If <0.85, this nonconformance must be noted in the laboratory case narrative.

The chromatograms of Continuing Calibration Standards for aromatics must be reviewed to ensure that there are no obvious signs of mass discrimination.

Is aliphatic mass discrimination observed in the sample?

Yes? or No?

Is aromatic mass discrimination observed in the sample?

Yes? or No?

1. In the space below, please show a minimum of one sample calculation:

JC47834-1MS

EPH (C11 – C22, Aromatics)

RF = 114,553

[] = (47963890)/(114,553)

[] = 418.7 ug/ml Ok

JC47834-1MS

EPH (C19 - C36, Aliphatics)

RF = 72,594

[] = (13254018)/(72,594)

[] = 182.6 ug/ml Ok

DATA REVIEW WORKSHEETS

. . . .

2.	If requested,	verify that	the results	were above	the laboratory	method detection
	limit (MDLs).				-	

3.	If dilutions performed, were the SQLs elevated accordingly by the laboratory?
	List the affected samples and dilution factor in the table below.

SAMPLE ID	DILUTION FACTOR	REASON FOR DILUTION				
		-				
		7				

If dilution was not performed, affected samples/compounds:		ults (J) for	the affected	compounds.	List the
	- Ja - 4891 - 3				

EXECUTIVE NARRATIVE

SDG No: MC47834 Laboratory: Accutest, Massachusetts

Analysis: MADEP VPH Number of Samples: 9

Location: BMSMC, Building 5 Area

Humacao, PR

SUMMARY: Nine (9) samples were analyzed for Volatiles TPHC Ranges by method MADEP

VPH. Samples were validated following the METHOD FOR THE DETERMINATION OF VOLATILE PETROLEUM HYDROCARBONS (EVH) quality control criteria, Massachusetts Department of Environmental Protection, Revision 1.1 (2004). Also the general validation guidelines promulgated by the USEPA Hazardous Wastes Support Section. The QC criteria and data validation actions listed on the data review worksheets are from the

primary guidance document, unless otherwise noted.

Results are valid and can be used for decision making purposes.

Critical issues: None Major: None Minor: None

Critical findings: None Major findings: None

Minor findings: 1. Analytes detected in method blank at a concentration below the

reporting limits. Analytes detected in sample batch above MDL but below the reporting limits. Laboratory qualified the results as JB. Sample results below the reporting limit are qualified undetected (U) at the reporting

limits; results above the reporting limit/action level are retained.

COMMENTS: Results are valid and can be used for decision making purposes.

Reviewers Name: Rafael Infante

Chemist License 1888

Rafael Defaut

Signature:

Date: October 6, 2016

SAMPLE ORGANIC DATA SAMPLE SUMMARY

Sample ID: MC47834-1

Sample location: BMSMC Building 5 Area

Sampling date: 9/13/2016

Matrix: Groundwater

METHOD: MADEP VPH

Analyte Name	Result	Units Di	lution Factor	Lab Flag	Validation	Reportable
Ç5 - C8 Aliphatics (Unadj.)	19.9	ug/L	1	J	J	Yes
Ç9 - C12 Aliphatics (Unadj.)	102	ug/L	1	В	-	Yes
Ç9 - C10 Aromatics (Unadj.)	74.0	ug/L	1	В	-	Yes
Ç5 - C8 Aliphatics	16.0	ug/L	1	J	J	Yes
C9 - C12 Aliphatics	26.9	ug/L	1	J	J	Yes

Sample ID: MC47834-2

Sample location: BMSMC Building 5 Area

Sampling date: 9/14/2016

Matrix: Groundwater

Analyte Name	Result	Units D	Dilution Factor	Lab Flag	Validation	Reportable
Ç5 - C8 Aliphatics (Unadj.)	9.8	ug/L	1	J	J	Yes
Ç9 - C12 Aliphatics (Unadj.)	13.4	ug/L	10	JB	U	Yes
Ç9 - C10 Aromatics (Unadj.)	16.8	ug/L	1	JB	U	Yes
Ç5 - C8 Aliphatics	50	ug/L	1	-	-	Yes
Ç9 - C12 Aliphatics	50	ug/L	1	-	-	Yes

Sample ID: MC47834-3

Sample location: BMSMC Building 5 Area

Sampling date: 9/14/2016

Matrix: Groundwater

METHOD: MADEP VPH

Analyte Name	Result	Units D	ilution Factor	Lab Flag	Validation	Reportable
Ç5 - C8 Aliphatics (Unadj.)	50	ug/L	1	-	U	Yes
Ç9 - C12 Aliphatics (Unadj.)	9.5	ug/L	1	JB	U	Yes
Ç9 - C10 Aromatics (Unadj.)	14.2	ug/L	1	JB	U	Yes
Ç5 - C8 Aliphatics	50	ug/L	1	-	U	Yes
Ç9 - C12 Aliphatics	50	ug/L	1	-	U	Yes

Sample ID: MC47834-4

Sample location: BMSMC Building 5 Area

Sampling date: 9/14/2016

Matrix: Groundwater

Analyte Name	Result	Units Di	lution Factor	Lab Flag	Validation	Reportable
Ç5 - C8 Aliphatics (Unadj.)	47.1	ug/L	1	J	J	Yes
Ç9 - C12 Aliphatics (Unadj.)	130	ug/L	1	-	-	Yes
Ç9 - C10 Aromatics (Unadj.)	94.9	ug/L	1	В	-	Yes
Ç5 - C8 Aliphatics	27.7	ug/L	1	J	J	Yes
Ç9 - C12 Aliphatics	35.3	ug/L	1	J	J	Yes

Sample ID: MC47834-5

Sample location: BMSMC Building 5 Area

Sampling date: 9/14/2016

Matrix: Groundwater

METHOD: MADEP VPH

Analyte Name	Result	Units Di	lution Factor	Lab Flag	Validation	Reportable
Ç5 - C8 Aliphatics (Unadj.)	9.7	ug/L	1	J	J	Yes
Ç9 - C12 Aliphatics (Unadj.)	17.3	ug/L	1	JB	U	Yes
Ç9 - C10 Aromatics (Unadj.)	16.3	ug/L	1	JB	U	Yes
Ç5 - C8 Aliphatics	9.4	ug/L	1	J	J	Yes
Ç9 - C12 Aliphatics	50	ug/L	1	-	U	Yes

Sample ID: MC47834-6

Sample location: BMSMC Building 5 Area

Sampling date: 9/15/2016

Matrix: Groundwater

Analyte Name	Result	Units Di	ution Factor	Lab Flag	Validation	Reportable
Ç5 - C8 Aliphatics (Unadj.)	12.7	ug/L	1	J	J	Yes
Ç9 - C12 Aliphatics (Unadj.)	8.2	ug/L	1	JB	U	Yes
Ç9 - C10 Aromatics (Unadj.)	12.1	ug/L	1	JB	U	Yes
Ç5 - C8 Aliphatics	12.5	ug/L	1	J	J	Yes
Ç9 - C12 Aliphatics	50	ug/L	1	-	U	Yes

Sample ID: MC47834-7

Sample location: BMSMC Building 5 Area

Sampling date: 9/15/2016

Matrix: Groundwater

METHOD: MADEP VPH

Analyte Name	Result	Units Di	lution Factor	Lab Flag	Validation	Reportable
Ç5 - C8 Aliphatics (Unadj.)	79.2	ug/L	1	-	-	Yes
Ç9 - C12 Aliphatics (Unadj.)	75.7	ug/L	1	В	-	Yes
Ç9 - C10 Aromatics (Unadj.)	51.0	ug/L	1	В	-	Yes
Ç5 - C8 Aliphatics	72.6	ug/L	1	-	-	Yes
Ç9 - C12 Aliphatics	22.7	ug/L	1	J	J	Yes

Sample ID: MC47834-1MS

Sample location: BMSMC Building 5 Area

Sampling date: 9/13/2016

Matrix: Groundwater

Analyte Name	Result	Units [Dilution Factor	Lab Flag	Validation	Reportable
Ç5 - C8 Aliphatics (Unadj.)	349	ug/L	1	-	-	Yes
Ç9 - C12 Aliphatics (Unadj.)	497	ug/L	1	-	-	Yes
Ç9 - C10 Aromatics (Unadj.)	195	ug/L	1	-	-	Yes

Sample ID: MC47834-1MSD

Sample location: BMSMC Building 5 Area

Sampling date: 9/13/2016 Matrix: Groundwater

Analyte Name	Result	Units D	ilution Factor	Lab Flag	Validation	Reportable
Ç5 - C8 Aliphatics (Unadj.)	362	ug/L	1	-	-	Yes
Ç9 - C12 Aliphatics (Unadj.)	488	ug/L	1	-	-	Yes
Ç9 - C10 Aromatics (Unadj.)	150	ug/L	1	-	-	Yes

DATA REVIEW WORKSHEETS

Type of validation	Full:X Limited:	Project Number:_MC47834 Date:09/13-15/2016 Shipping date:09/15/2016 EPA Region:2
REVIEW OF	VOLATILE PETROLE	EUM HYDROCARBON (VPHs) PACKAGE
actions. This docume informed decision and assessed according to METHOD FOR THE Massachusetts Depar validation guidelines	nt will assist the reviet in better serving the the data validation guid DETERMINATION OF the total of Environmenta promulgated by the US dation actions listed on	organics were created to delineate required validation over in using professional judgment to make more needs of the data users. The sample results were lance documents in the following order of precedence VOLATILE PETROLEUM HYDROCARBONS (VPH), I Protection, Revision 1.1 (2004). Also the general SEPA Hazardous Wastes Support Section. The QC the data review worksheets are from the primary
The hardcopied (latereceived has been review for SVOCs included)	riewed and the quality	itest_Laboratories data package control and performance data summarized. The data
i np blank No.:	9	Sample matrix:Groundwater
X Data Comple X Holding Time N/A GC/MS Tunir N/A Internal Stand X Blanks X Surrogate Re X Matrix Spike/	es na	X Laboratory Control SpikesX Field DuplicatesX CalibrationsX Compound IdentificationsX Compound QuantitationX Quantitation Limits
	ments:Vola ;_C9_to_C10_Aromatic	tiles_by_GC_by_Method_MADEP_VPH,_REV_1.1 s)
Definition of Qualifiers:		
J- Estimated results U- Compound not Rejected data UJ- Estimated not Reviewer: Date: 10/05/2016 /	detected	

			Criteria were no	ot met and/or see below
l.		OMPLETNE Data Packag		
MISS	ING INFO	RMATION	DATE LAB. CONTACTED	DATE RECEIVED
				,
B.	Other			Discrepancies:
B.	Other			Discrepancies:
B.	Other			Discrepancies:
B.	Other			Discrepancies:
B.	Other			Discrepancies:
B.	Other			Discrepancies:

All criteria were met __x__

All criteria were met	X
Criteria were not met and/or see below	

HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of extraction, and subsequently from the time of extraction to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

DATE	DATE	DATE	ACTION
SAMPLED	EXTRACTED	ANALYZED	
lyzed within met	hod recommende	d holding time. Sa	ample presentation
			imple preservation
	SAMPLED lyzed within met	SAMPLED EXTRACTED lyzed within method recommende	

Criteria

Preservation:

Samples analyzed with ambient purge temperature: Samples must be acidified to a pH of 2.0 or less at the time of collection.

Samples analyzed with heated purge temperature: Samples must be treated to a pH of 11.0 or greater at the time of collection.

Methanol preservation of soil/sediment samples is mandatory. Methanol (purgeand-trap grade) must be added to the sample vial before or immediately after sample collection. In lieu of the in-field preservation of samples with methanol, soil samples may be obtained in specially-designed air tight sampling devices, provided that the samples are extruded and preserved in methanol within 48 hours of collection.

Holding times:

Aqueous samples using ambient or heated purge - analyze within 14 days. Soil/sediment samples - analysis within 28 days.

Cooler temperature	(Criteria:	4 ± 2 '	°C):	4.1°C	

Actions: Qualify positive results/non-detects as follows:

If holding times are exceeded, estimate positive results (J) and nondetects (UJ).

If holding times are grossly exceeded, use professional judgment to qualify data. The data reviewer may choose to estimate positive results (J) and rejects nondetects (R).

If samples were not at the proper temperature (> 10°C) or improperly preserved, use professional judgment to qualify the results.

		C	All criteria were not met an	eria were metX_ d/or see below	
CALIBRAT	IONS VERIFIC	ATION			
			trument calibration are d maintaining acceptab		
		Date of in	nitial calibration:08/	17/16	
		Dates of	initial calibration verific	ation:08/17/16_	
		Instrume	nt ID numbers:	_GCWX	
		Matrix/Le	evel:AQUEOUS/N	MEDIUM	
DATE	LAB FILE ID#	ANALYTE	CRITERIA OUT RFs, %RSD, %D, r	SAMPLES AFFECTED	
Initi	al and initial ca	libration verification	meet method specific r	equirements	

Criteria- ICAL

- Five point calibration curve.
- The percent relative standard deviation (%RSD) of the calibration factor must be equal to or less than 25% over the working range for the analyte of interest. When this condition is met, linearity through the origin may be assumed, and the average calibration factor is used in lieu of a calibration curve.
- A collective calibration factor must also be established for each hydrocarbon range
 of interest. Calculate the collective CFs for C5-C8 Aliphatic Hydrocarbons and C9C12 Aliphatic Hydrocarbons using the FID chromatogram. Calculate the collective
 CF for the C9-C10 Aromatic Hydrocarbons using the PID chromatogram. Tabulate
 the summation of the peak areas of all components in that fraction against the total
 concentration injected. The %RSD of the calibration factor must be equal to or less
 than 25% over the working range for the hydrocarbon range of interest.

Criteria- CCAL

- At a minimum, the working calibration factor must be verified on each working day, after every 20 samples, and at the end of the analytical sequence by the injection of a mid-level continuing calibration standard to verify instrument performance and linearity.
- If the percent difference (%D) for any analyte varies from the predicted response by more than ±25%, a new five-point calibration must be performed for that analyte. Greater percent differences are permissible for n-nonane. If the %D for n-nonane is greater than 30, note the nonconformance in the case narrative. It should be noted that the %Ds are calculated when CFs are used for the initial calibration and

DATA REVIEW WORKSHEETS

percent drifts are calculated when calibration curves using linear regression are used for the initial calibration.

Actions:

If %RSD > 25% for target compounds or a correlation coefficient < 0.99, estimate positive results (J) and use professional judgment to qualify nondetects.

If % D > 25% (> 30 for nonane), estimate positive results (J) and nondetects (UJ).

CALIBRATIONS VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

		Date of initia	al calibration:	_08/17/16
		Dates of cor	ntinuing calibration verific	ation: 09/19/16
		Dates of fina	al calibration verification:	_08/17/16;_09/19/16
		Instrument I	D numbers:	GCWX
		Matrix/Level	: AQUEO	JS/MEDIUM
DATE	LADELE	ANIALNOTE	ODITEDIA OLIT	0445150
DATE	LAB FILE ID#	ANALYTE	CRITERIA OUT RFs, %RSD, %D, r	SAMPLES AFFECTED
	_	-		
Cantin		-11		-26**
Conun	uing and final (alidration verific	ation meets method spe	cific requirements.

Note:

A separate worksheet should be filled for each initial curve

Note:

	VVORROHEET			
			Criteria were not n	All criteria were met net and/or see below X
				iet alid/of see below
/ A. BLANI	K ANALYSIS RE	SULTS (Sed	ctions 1 & 2)	
of contamina associated wi with any blan determine wh oroblem is ar	tion problems. The the samples, in the samples, in the samples exist, all data ether or not ther in isolated occurrafter samples sus	The criteria ncluding tripa associate e is an inhe ence not al	for evaluation of b, equipment, and d with the case merent variability in to fecting other data	e the existence and magnitude blanks apply only to blan laboratory blanks. If problem is the carefully evaluated the data for the case, or if the case, or if the case is a Laboratory Method Blan inated to determine if same
ist the conta separately.	amination in the	blanks belo	w. High and low	evels blanks must be treat
_aboratory bla	anks			
DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
	BLANKS MEET DWING:		THOD SPECIFIC	CRITERIA_EXCEPT_FO
_09/19/16				ntics)13.0_ug/L atics)21.4_ug/L
Note:	limits. Analytes reporting limits below the report	detected Laborator	in sample batch y qualified the re	centration below the reporting above MDL but below the sults as JB. Sample resulted (U) at the reporting limiter retained.
Field/Trip/Equ	uipment			
DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
			S_ANALYZED_AS\$	SOCIATED_WITH_THIS

6

All criteria were metX
Criteria were not met and/or see below

V B. BLANK ANALYSIS RESULTS (Section 3)

Blank Actions

The ALs for samples which have been diluted should be corrected for the sample dilution factor and/or % moisture, where applicable. Peaks must not be detected above the Reporting Limit within the retention time window of any analyte of interest. The hydrocarbon ranges must not be detected at a concentration greater than 10% of the most stringent MCP cleanup standard. Specific actions area as follows:

If the concentration is < sample quantitation limit (SQL) and < AL, report the compound as not detected (U) at the SQL.

If the concentration is \geq SQL but < AL, report the compound as not detected (U) at the reported concentration.

If the concentration is > AL, report the concentration unqualified.

CAMDIFID

All criteria were metX
Criteria were not met and/or see below

ACTION

SURROGATE SPIKE RECOVERIES

Laboratory performance of individual samples is established by evaluation of surrogate spike recoveries. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

List the percent recoveries (%Rs) which do not meet the criteria for surrogate recovery. Matrix: solid/aqueous

SUPPOSATE COMPOUND

OAMI'LL ID	2,3,4-Trifluorotolue			ACTION
_SURROGATE_S _LIMITS	STANDARD_RECO	VERIES_WITI	HIN_LABORATORY	_CONTROL
	407		M27.	
QC Limits* (AqueLL_to_UL QC Limits* (Solid	70_to_130_	to	to	
LL to UL	-	to	to	

It is recommended that surrogate standard recoveries be monitored and documented on a continuing basis. At a minimum, when surrogate recovery from a sample, blank, or QC sample is less than 70% or more than 130%, check calculations to locate possible errors, check the fortifying standard solution for degradation, and check changes in instrument performance.

If the cause cannot be determined, reanalyze the sample unless one of the following exceptions applies:

- (1) Obvious interference is present on the chromatogram (e.g., unresolved complex mixture);
- (2) Percent moisture of associated soil/sediment sample is >25% and surrogate recovery is >10%; or
- (3) The surrogate exhibits high recovery and associated target analytes or hydrocarbon ranges are not detected in sample.

If a sample with a surrogate recovery outside of the acceptable range is not reanalyzed based on any of these aforementioned exceptions, this information must be noted on the data report form and discussed in the Executive Report. Analysis of the sample on dilution may diminish matrix-related surrogate recovery problems. This approach can be used as long as the reporting limits to evaluate applicable MCP standards can still be achieved with the dilution. If not, reanalysis without dilution must be performed.

All criteria were metX
Criteria were not met and/or see below

VII. A MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples.

At the request of the data user, and in consideration of sample matrices and data quality objectives, matrix spikes and matrix duplicates may be analyzed with every batch of 20 samples or less per matrix.

- Matrix duplicate Matrix duplicates are prepared by analyzing one sample in duplicate. The purpose of the matrix duplicates is to determine the homogeneity of the sample matrix as well as analytical precision. The RPD of detected results in the matrix duplicate samples must not exceed 50 when the results are greater than 5x the reporting limit.
- The desired spiking level is 50% of the highest calibration standard. However, the total concentration in the MS (including the MS and native concentration in the unspiked sample) should not exceed 75% of the highest calibration standard in order for a proper evaluation to be performed. The purpose of the matrix spike is to determine whether the sample matrix contributes bias to the analytical results. The corrected concentrations of each analyte within the matrix spiking solution must be within 70 130% of the true value. Lower recoveries of n-nonane are permissible (if included in the calibration of the C9-C12 aliphatic range), but must be noted in the narrative if <30%.</p>

MS/MSD Recoveries and Precision Criteria		
Sample ID:_MC47834-1_MS/MSD	Matrix/Level:_Groundwater	_
List the %Rs, RPD of the compounds which do not	meet the QC criteria.	

Note: MS/MSD % recovery and RPD within laboratory control limits.

No action is taken on MS/MSD results alone to qualify the entire case. However, used informed professional judgment, the data reviewer may use the MS/MSD results in conjunction with other QC criteria and determine the need for some qualification of the data. In those instances where it can be determined that the results of the MS/MSD affect only the sample spiked, the qualification should be limited to this sample alone. However, it may be determined through the MS/MSD results that the laboratory is having a systematic problem in the analysis of one or more analytes, which affects the associated samples.

			Criteria w	All criter	ia were metX_ or see below
2. MS/MSD – U	Unspiked Compound	ds			
	ions of the unspike				
COMPOUND	CONCENTRATION SAMPLE	ON MS	MSD	%RPD	ACTION
Criteria: None speci	ified, use %RSD <u><</u> 5	50 as į	orofession	al judgment.	
Actions:					
If the % RSD is not	qualify the results in calculable (NC) due dgment to qualify sa	e to no	ndetect va		

A separate worksheet should be used for each MS/MSD pair.

All criteria were metX
Criteria were not met and/or see below

VIII. LABORATORY CONTROL SAMPLE (LCS/LCSD) ANALYSIS

This data is generated to determine accuracy of the analytical method for various matrices.

LCS Recoveries Criteria

List the %R of compounds which do not meet the criteria

LCS ID	COMPOUND	% R	QC LIMIT	ACTION				
LCS_RE	_LCS_RECOVERY_WITHIN_LABORATORY_CONTROL_LIMTS							
	1000			145 TA 15 V	3 - 10 - 10 - 10			

Criteria:

- Refer to QAPP for specific criteria.
- * The spike recovery must be between 70% and 130%. Lower recoveries of nnonane are permissible (if included in the calibration of the C9-C12 aliphatic range). If the recovery of n-nonane is <30%, note the nonconformance in the executive narrative.

Actions:

Actions on LCS recovery should be based on both the number of compounds that are outside the %R criteria and the magnitude of the excedance of the criteria.

If the %R of the analyte is > UL, qualify all positive results (j) for the affected analyte in the associated samples and accept nondetects.

If the %R of the analyte is < LL, qualify all positive results (j) and reject (R) nondetects for the affected analyte in the associated samples.

If more than half the compounds in the LCS are not within the required recovery criteria, qualify all positive results as (J) and reject nondetects (R) for all target analyte(s) in the associated samples.

Frequency Criteria:

Where LCS analyzed at the required frequency and for each matrix (1 per 20 samples per matrix)? Yes or No.

If no, the data may be affected. Use professional judgment to determine the severity of the effect and qualify data accordingly. Discuss any actions below and list the samples affected. Discuss the actions below:

	Cr	All criteria iteria were not met and/or see	a were met e belowN	
IX.	FIELD/LABORATORY DUPLICATE I	PRECISION		
Sample	le IDs:		Matrix:	

Field/laboratory duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which measures only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples.

COMPOUND	SQL	SAMPLE CONC.	DUPLICATE CONC.	RPD	ACTION	
No field/laboratory duplicate analyzed with this data package. MS/MSD % recovery RPD used to assess precision. RPD within laboratory and validation guidance document						
criteria (± 50 %) for analytes detected above reporting limits.						

Criteria:

The project QAPP should be reviewed for project-specific information. RPD \pm 30% for aqueous samples, RPD \pm 50 % for solid samples if results are \geq SQL. If both samples and duplicate are <5 SQL, the RPD criteria is doubled.

SQL = soil quantitation limit

Actions:

If both the sample and the duplicate results are nondetects (ND), the RPD is not calculable (NC). No action is needed.

Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria.

If one sample result is not detected and the other is $\geq 5x$ the SQL qualify (J/UJ).

Note: If SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate.

If one sample value is not detected and the other is < 5x the SQL, use professional judgment to determine if qualification is appropriate.

All criteria were metX
Criteria were not met and/or see below

XI. COMPOUND IDENTIFICATION

The compound identification evaluation is to verify that the laboratory correctly identified target analytes as well as tentatively identified compounds (TICs).

- 1. Verify that the target analytes were within the retention time windows.
 - Retention time windows must be re-established for each Target VPH
 Analyte each time a new GC column is installed, and must be verified and/or
 adjusted on a daily basis.
 - o Coelution of the m- and p- xylene isomers is permissible.
 - o Ail surrogates must be adequately resolved from individual Target Analytes included in the VPH Component Standard.
 - For the purposes of this method, adequate resolution is assumed to be achieved if the height of the valley between two peaks is less than 25% of the average height of the two peaks.
 - The n-pentane (C5) and MtBE peaks must be adequately resolved from any solvent front that may be present on the FID and PID chromatograms, respectively.

Note: Target analytes were within the retention time window.

If target analytes and/or TICs were not correctly identified, request that the laboratory resubmit the corrected data.

		Crite		ll criteria were met> et and/or see below			
XII.	QUANTITATIO	QUANTITATION LIMITS AND SAMPLE RESULTS					
The	sample quantitati	ion evaluation is to verify labo	ratory quantita	tion results.			
1.	In the space b	elow, please show a minimur	n of one sampl	e calculation:			
MC4	7834-7	VPH (C5 - C7 Alipha	itics)	RF = 2.135 x 10 ⁴			
FID							
[]=	(125945)/(2.135	× 10⁴)					
[]=:	5.89 ppb Ok						
MC4	7834-7	VPH (C9 - C10 Arom	natics)	RF = 1.257 x 10 ⁴			
PID							
[]=	(641647)/(1.257	x 10⁴)					
[]=	51.05 ppb Ok						
2. (MDI		verify that the results were ab	ove the laborat	tory method detection	limit		
3.		formed, were the SQLs elevanted amples and dilution factor in the			List		
	SAMPLE ID	DILUTION FACTOR	REASON	FOR DILUTION			
If dilu resul	ution was not per ts (J) for the affe	formed and the results were cted compounds. List the affe	above the concted samples/o	centration range, estir compounds:	nate		